MR11/ MR12

Code No.: 10205/20205

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD)
Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

II B.TECH II SEMESTER SUPPLEMENTARY EXAMINATIONS, DECEMBER -2018

Subject: : **NETWORK THEORY**

Branch: EEE

Time: 3 hours

Max. Marks: 75

Answer any **FIVE** Questions of the following

5x15M = 75M

- 1. a) Prove that two Waltmeters are enough to measure 3-phase supply in balanced 3-φ load.
 - b) A 3-φ motor operating on a 440V, 50 Hz supply system is developing 25Kw at an efficiency of 90% and a power factor of 0.85. Calculate i) the line current and (ii) the phase current if the windings are delta-connected.
- 2. a) In the circuit shown in fig., the switch is closed at t=0, Find (i) an expression for source current
 - (ii) An expression for coil current.

- 3. a) Derive expression for the transient response of an R L series circuit excited by sinusoidal excitation. [7+8]
 - b) In the circuit shown in fig.1, determine the complete solution for the current, when the switch is closed at t=0. Applied voltage is $v(t) = 400\cos(500t + \frac{\pi}{4})$ Resistance R=15 Ω , inductance L=0.2H and capacitance C=3 μ F.

- 4. a) Write the properties and necessary condition for transfer function.
 - b) Determine the driving point impedance for the given network shown in figure

- 5. a) Explain briefly about Admittance parameters and discuss their physical significance.
 - b) Determine the Admittance parameters for the given network shown in figure and draw its equivalent circuit.

- 6. a) What type of parameters are suitable to describe series connection of Two-port Network and drive the expression for resulting parameters.
 - b) Two networks shown in figures (a) and (b) are connected in series. Obtain the Z parameters of the combination. Also verify by direct calculation.

- 7. What is a constant-k low pass filter? Derive its characteristics impedance.
- 8. a) Obtain the Fourier analysis of the wave form shown in figure

[7+8]

b) Determine the Fourier series of the wave form shown in fig. Using Trigonometric series.

MR11/ MR12

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD) Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

II B.TECH II SEMESTER SUPPLEMENTARY EXAMINATIONS, DECEMBER -2018

Subject: **ELECTRONIC CIRCUITS**

Branch: EEE

Time: 3 hours

Max. Marks: 75

Answer any FIVE Questions of the following

5x15M = 75M

1. a) Calculate the current gain A_1 , voltage gain Av, Input Resistance R_1 and output Resistance Ro for the Common collector Amplifier shown in figure whose transistor parameters are h_{ie} = 1.4 K Ω , h_{fe} =100, h_{fc} =100, h_{rc} =20 μ A/v, h_{oc} =20* 10⁻⁶. [8+7]

- b) Write about the various Distortions in Amplifiers.
- 2. a) What do you mean by frequency response of amplifier? How is it plotted?
 - b) For an amplifier, 3dB gain is 200 & higher cutoff frequency is 20KHz. Find the gain of the amplifier at frequency 100KHz. [7+8]
- 3. a) Explain the effect of negative feedback on Input Resistance for Voltage series and Current shunt feedback amplifiers. [8+4+3]
 - b) Explain with the circuit diagram a negative feedback amplifier and obtain the expression for its closed loop gain.
 - c) What are the disadvantages of negative feedback amplifier.
- 4. a) Derive an expression for the frequency of oscillation of Hartley oscillator using transistor.
 - b) What are the factors that effect the frequency stability of an oscillator?

[8 + 7]

5. a) Explain the operation of Class D amplifier.

[7+5+3]

- b) How are amplifiers classified based on biasing conditions.
- c) A class A power amplifier has a transformer as load. If the transformer has turns ratio of 5 and secondary load is 100Ω . Determine the maximum ac power output given that zero signal collector current is 100 mA.
- 6. a) Explain the operation of emitter coupled clipper with neat circuit diagram and plot its transfer characteristics.
 - b) Compare clippers and clampers

[5]

7. a) Explain the various regions of operation of a transistor.

[8]

- b) Consider high speed transistor in CE configuration with $V_i = V(0) = -2.5V$ for logical 0 and $V_i = V(1) = 5V$ for logical 1. Determine the output levels for switch. The static current gain hfe of transistor is 25 and $V_{BE}(sat) = 0V$ and $V_{CE}(sat) = 0V$. Calculate I_B and I_C of the transistor.
- 8. a) Explain the operation of self-biased bistablemultivibrator.

(7)

b) Design a fixed-bias bitable multivibrator using Ge transistors having hFE(min) = 50, VCC = 10 V and VBB = 10 V, VCE (sat) = 0.1 V, VBE(sat) = 0.3 V, IC(sat) = 5 mA and assume Ib(sat) = 1.5IB (min.). (8)